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Optimal Control is a formulation for posing the problem
of designing controllers for dynamical systems whereby the
desired long-term behavior of the system is expressed using
a cost function. The objective is to compute a policy, i.e. a
mapping from state of the system to control inputs, that mini-
mizes the cost function. The complexity of computing optimal
policies over the full state-space grows exponentially with the
dimensionality of the state. Several approximation methods
relying on either local search or state-space reduction have
been proposed to alleviate this ’curse of dimensionality’ and
make synthesis of optimal controllers tractable for complex
systems.

Local search methods such as iLQG [1], DDP [2] focus on
the system behavior close to a reference motion and iteratively
update both, the control as well as the reference motion,
resulting in locally optimal policies. A global controller can
be obtained by combining many such local policies but it is
unclear how well the global controller approximates the true
optimal policy. State-space reduction methods design control
policies as a function of some lower-dimensional features
of the state. These features are either hand-designed , or
obtained by minimizing some projection error. However, these
methods neither reason about nor predict the effect of these
simplifications on the closed-loop behavior of the system.
For linear systems, [3] reason about the closed-loop behavior
in finding lower-dimensional representative systems. Methods
that reason about the suboptimality of the resulting policies in
finding suitable reductions for nonlinear systems are missing.

We introduce Policy Decomposition, a reduction method
with an explicit suboptimality measure. Policy Decomposition
proposes strategies to decouple and cascade the process of
computing control policies for different inputs to a system
(Fig. 1(a)). An intuitive abstraction to represent a strategy is

using an input-tree (Fig. 1(b)). Each node in the input-tree
(except the root) represents a subsystem. Subsystems that lie
on the same branch are in a cascade and policies for inputs
lower in the cascade influence the policies for inputs higher-up.
Subsystems that lie on different branches are decoupled for the
sake of policy computation. Based on the strategy/input-tree
the control policies are a function of only a subset of the entire
state of the system, and can be obtained by solving lower-
dimensional optimal control problems leading to reduction in
policy compute times.

We introduce the error between value functions of control
policies obtained with and without decomposing to assess the
suboptimality of a decomposition strategy. This error cannot
be obtained without knowing the true optimal control, and we
estimate it based on LQR and DDP approximations. The LQR
based estimate can be computed in minimal time whereas the
DDP based estimate is more accurate. Using a cart pole, a 3-
link balancing biped, and N-link planar manipulators, we show
the proposed method can identify decomposition strategies
that result in substantial reduction in policy computation times
while sacrificing little in closed-loop performance. To system-
atically search through the possible policy decompositions for
a system, we explore the use of search methods such as Ge-
netic Algorithm (GA) and Monte-Carlo Tree Search (MCTS)
to quickly find promising decompositions. Our experiments
suggest that Policy Decomposition is viable alternative for
simplifying optimal control synthesis for complex systems.
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Fig. 1. (a) Concept of policy decomposition shown for a fictive system with four states and four inputs. (b) An input-tree that describes the policy decomposition
described in (a) is depicted (left). The three resulting subsystems are shown (mid). Policies for u1 and u4, i.e. the inputs at the leaf nodes, are obtained first
by independently solving the optimal control problems for subsystems 1 and 2 respectively. Policies for inputs u2 and u3 are computed jointly by solving
the optimal control problem for subsystem 3. The resulting policies for different inputs are a function of different state variables (right).
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