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I. BACKGROUND

Machines are designed to optimize a performance metric. A
trend in recent work is for intelligent machines to run an opti-
mization scheme in the loop with other adaptive components.
An example is in human-in-the-loop optimization of assistive
devices, where the optimizer tries to improve the human’s gait
or metabolic usage by actuating their limbs.

A challenge in this line of work is that the machine does
not take the human’s adaptation into account, effectively
assuming that human’s response is stationary (in a stochastic
or variational sense). The strategic component of these systems
are un-modeled, which can lead to sub-optimal performance
(e.g. slow convergence or cycling). By explicitly modeling
the human-machine system as a game, we are able to predict
behavior of the learning agents as they interact with one other
to seek equilibrium. Specifically, we can predict stability or
instability of stationary points in human-machine interaction
by spectral analysis of the learning dynamics.

II. MATHEMATICAL MODEL

Consider a game played by two strategic agents – a human
and a machine – that independently choose their component
of a continuous decisions variable (H,M) ∈ H × M. A
reasonable adaptation strategy (c.f. [1]–[3]) posits that agents
iteratively continuously descent cost functions cH , cM ,

∂
∂tH = −α∂cH

∂H (H,M), ∂
∂tM = −β ∂cM

∂M (H,M), (1)

wherein learning rates α, β determine small adjustments made
to continually decrease cM and cH . Despite the simplicity
of this descent strategy, the game dynamics in (1), can be
complex due to interactions between players. For instance, and
in contrast to gradient descent with a single cost function,
player costs are not guaranteed to decrease at each step.
Recent work by ourselves and others [4] provides guarantees
on convergence and performance for (1).

III. EXPERIMENTAL SETUP

We are designing an experiment to test whether game
dynamics can predict the behavior of human-machine systems.
In particular, we demonstrate that for a fixed game (cH , cM ),
which is chosen to be quadratic, the size of the learning
parameter β can elicit categorically different behavior as
predicted by the various outcomes of simultaneous (Nash) and
sequential (Stackelberg) play.
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Fig. 1. Human-machine interaction is a closed-loop system. In this diagram,
there are two agents: the human and the machine. They depend on each other
when controlling the plant. The arrows behind the blocks signify adaptation.

Fig. 2. Human and machine coadaptation can be modeled as a mathematical
game. We visualize the quadratic cost landscape of two agents. To solve
this game, agents seek stationary points (H∗,M∗) such that they are each
minimizers of their own costs, i.e. a Nash or Stackelberg equilibrium.

In the experiment, each player chooses a scalar-valued
action H,M ∈ R at a frequency of 40Hz for one minute.
The interaction is determined by the game vector field: the
machine does gradient descent with a constant step size; the
human is instructed to move its cursor horizontally to decrease
the value of its cost cH(H,M), which is prescribed to the user
through an interface (Figure 2).

To answer the question posed in the title, we do not need
to model exactly what learning strategy the human employs.
Instead, we can observe the steady state of the system,
whether it is stationary, oscillating, or divergent. We strongly
believe that game dynamics will serve as an crucial paradigm
for modeling intelligent machines that are in-the-loop with
humans and with society as a whole. We hope to get feedback
from the community on our experiment design.
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