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I. INTRODUCTION

Online motion planning remains a core challenge in con-
trolling bipedal robots. To achieve computational tractability
for online planning, state of the art methods use reduced
order models such as LIP and SLIP [1], which limit the
capabilities of complex robots to a low dimensional manifold.
The single rigid body dynamics (SBRD) model is a more
permissive model which allows arbitrary base motions up to
actuation and friction limits, but whose nonlinearity poses
problems for online planning. This model approximates the
body of the robot as a single rigid body which obeys the
Newton-Euler equations of motion. Here, we take inspiration
from Koopman Operator theory to develop approximate linear
equations of motion for the SRBD model, and formulate the
motion planning problem in a convex optimization framework
to enable online motion planning.

II. KOOPMAN OPERATORS

Koopman Operator theory as applied to control seeks to
approximate a nonlinear dynamical system & = f(x,u) as a
linear system of the form:

2=Az+ Bu (1)

where z is a vector of scalar-valued, continuous functions of
x called observable functions [2]. Including the elements of x
as elements of z allows for the natural expression of costs
and constraints in this new Koopman space. Planning can
then be formulated as a quadratic program, a popular form
of optimization for online control due to the reliability and
speed of modern solvers.

III. APPROACH

Linear models are identified by sampling the state space
of the SRBD model and calculating the dynamics of z at
each point analytically, then applying a least-squares fit to this
dataset to find A and B which best explain the single rigid
body dynamics in Koopman space. Trajectory optimization is
performed online in a model predictive control (MPC) fashion
by solving a quadratic program with the integration of (1) as
a dynamics constraint.

Preliminary simulation experiments controlling an under-
actuated planar rigid body with a trivial Koopman space of
z = [:U 1]T show the Koopman MPC controller is able
to generate stable walking motions. In fact, MPC using this
model is more robust to disturbances and permits larger steps
than MPC using a linearization of the Newton-Euler equations.
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Fig. 1. The Koopman MPC model is best able to reject a disturbance force
of 13% of the robot’s weight to maintain the desired walking speed

Our hypothesis for why a simple Koopman model outper-
forms the linearization is that the Koopman model reflects the
true dynamics more accurately away from the linearization
point. Additionally, choosing z = [z l]T rather than a
choice of z with additional functions of « may have performed
better due to issues of closure under the Koopman operator. A
closed, finite dimensional approximation for the Koopman op-
erator does not exist for most systems [3], including the SRBD
model. Adding additional terms to the Koopman representation
may therefore corrupt A and B with spurious correlations.

We are currently implementing the Koopman MPC con-
troller on a five link planar walker in simulation to test the
applicability of this framework to robots with massive legs and
rigid body impacts. Additional work is also needed to find an
optimal Koopman representation of the 3D SRBD model and
resolve the closure challenges which limit the performance of
higher dimensional Koopman models.
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