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I. INTRODUCTION & BACKGROUND

A frequent goal in robot design is to engineer mechanical
intelligence into the systems we field, and as often empirically
observed in biological systems. Such embodied intelligence
should translate into the effective interaction between a robot
and the environment, enabling more efficient and robust lo-
comotion. Yet, it remains an open problem for how designers
can achieve this goal through formalized methods. Robots are
composed of both mechanical and control systems, which are
often designed separately. This work proposes that consider-
ing the coupled aspects of both systems simultaneously via
co-design provides a route for embodying intelligence into
the morphological design decisions. Nonetheless, the coupled
consideration of morphology and control introduces scalability
challenges for co-design methods. This work co-optimizes a
feedback controller with the system morphology for a hopping
robot, and provides a method that deals with scalability via the
Alternating Direction Method of Multipliers (ADMM). The
embodied intelligence of the design is assessed via considering
the capacity of the system’s natural dynamics toward reducing
the control action required to reject disturbances.

II. METHODS

To add robustness reasoning to a design, we co-optimize
morphology parameters p, a nominal state-control pair v*(¢),
and linear feedback gains K(t) for disturbance rejection. Us-
ing a two-stage SP formulation [1], the co-design framework
makes decisions over a probabilistic model of disturbances
w(t) to a nominal scenario. To relieve scalability limitations
as the number of scenarios increases, ADMM [2] is considered
to coordinate the solution of reduced-size SP problems (with
few scenarios) that in total add to a large-size SP problem
(see Fig. 1a). For co-design, consider that there exists a single
projected (global) design and several designs produced by the
local sub-problems. The ADMM creates design consensus by
ensuring that local and global variables are consistent.
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III. RESULTS & DISCUSSION

For a planar 5-DoF monopod robot, we tested the frame-
work with 10 scenarios encoding terrain-height disturbances.
Height changes were modeled as stair obstacles with touch-
down at a random time (~ AN(0.8,0.25) € (0.5,1.0)) during
flight. The problem targeted the minimization of the jump
time and the electrical energy of the DC motors actuating the
hip and knee joints, and included the link geometry and the
motor gear ratios as decision variables. Each ADMM sub-
problem included the nominal (i.e., flat-terrain) scenario and
one perturbed scenario. After 26 ADMM iterations, the global
and local trajectories converged to an acceptable accuracy (see
Fig. 1b). The co-optimized controller and feedback gains were
effective in stabilizing the robot. Fig. 1c shows phase plots
that confirm the stabilization of the knee states. The results
agree with [3]: co-optimizing the nominal trajectory and the
feedback controller shrinks the region where the post-impact
states occur, which reduces the control effort. On average,
the cost of transport (CoT) increased 15% above the nominal
using the proposed approach, while using LQR designed
independently of the nominal trajectory and the morphology,
the CoT increased =~ 100%. The lower energy use needed for
stabilization can be an indicator of embodied intelligence.

For robot co-design, the ADMM implementation here is the
first of its sort. Our previous implementations without ADMM
became computationally intractable after including more than
6 disturbed scenarios. The additional scenarios available from
the improved scalability of ADMM improved both robustness
and efficiency. Future work will investigate convergence and
optimality conditions, and corroborate the contribution of the
robot’s natural dynamics to the control-effort reduction.
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Fig. 1. (a) Co-design of a 5-DoF monopod robot: The ADMM breaks the SP problem into reduced-size problems. (b) Nominal knee-angle trajectories of
global (Proj.) and 3 local (Sc.) designs after ADMM iterations 2 (top), 15 (middle), and 26 (bottom). (c) Knee phase plots: (left) Cyan and black dots mark
pre- and post-impact states, respectively, for the disturbed scenarios. (right) Stabilized trajectories correspond with the dots from the left.



