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I. BACKGROUND

While model-based gait generation and control methods
yield desirable theoretical properties such as safety certificates,
they are sensitive to model uncertainty induced by real-
world effects such as slipping, compliance, and flexibilities.
In response, the machine learning community has developed
several model-free approaches to locomotion including rein-
forcement learning, and imitation learning. However, these
methods often fail when deployed on hardware due to their
reliance on reward functions and simulation environments.

To leverage the advantages of model-based methods while
accounting for real-world dynamics, we propose a preference-
based learning framework that uses sequential human feedback
to systematically realize dynamic locomotion directly on hard-
ware. The main advantages of this approach are that it only
relies on easy to provide subjective human feedback, mainly
pairwise preferences, and it provides actions to sequentially
sample, eliminating the guess work of manual tuning.

II. METHODS

The objective of the proposed preference-based learning
framework is to use subjective feedback to identify the optimal
action a* = argmin,cpa U(a) of an unknown utility function
U :R% — R, in as few iterations as possible. The summarized
procedure of each iteration is to 1) select a new action to
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execute on the system using Thompson sampling, 2) obtain
subjective feedback based on the experimental performance,
and 3) infer a Bayesian posterior over the utilities U : A — R
corresponding to a discrete set of actions ¢ € A C R
Inspired by [1], we model the posterior probability as:

P(U | D) P(D|U)PU),

where D is the dataset of user feedback, P(D | U) is the
likelihood function, and P(U) is the Gaussian process prior.
For more details on the learning framework refer to [2], [3].

III. EXPERIMENTAL RESULTS

We demonstrate the preference-based learning framework
towards two model-based methods. First it was applied to-
wards tuning the essential constraints of an HZD optimization
problem to realize stable and robust locomotion on AMBER-
3M with spring feet (shown in Fig. la), without accounting
for the added compliance in the model or the controller [2].
Second, the method was applied towards identifying ID-CLF-
QPT controller gains (shown in Fig. 1b) that stabilized the
outputs of the 3D biped Cassie without torque chatter [3].
Future work includes unifying the framework to optimize both
the generated gaits and the controller simultaneously.
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Fig. 1. Experimental results of the preference-based learning framework towards: a) Tuning constraints of the HZD gait generation framework on AMBER-3M
with unmodeled spring feet; and b) Tuning ID-CLF-QP™ controller gains on Cassie, with robustness testing of the optimal action a*.
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