Preference-Based Learning for Dynamic Bipedal Locomotion

Caltech

Maegan Tucker, Noel Csomay-Shanklin, and Aaron D. Ames

California Institute of Technology {mtucker, noelcs, ames}@caltech.edu

 $a_5:[0.2,0.4]$

Abstract

- Use Preference-Based Learning to identify a^* with min. regret
- Experimentally demonstrate PBL towards identifying
 - 1) HZD constraints on AMBER-3M with unmodeled spring feet
 - 2) ID-CLF-QP⁺ controller gains on Cassie.

Preference-Based Learning Algorithm (LineCoSparV2)

The LineCoSpar algorithm is aimed at identifying and sampling the optimal action, $a^* := \operatorname{argmax}_{a \in \mathbb{R}^d} \ U(a)$ for some function $U : \mathbb{R}^d \to \mathbb{R}$, in as few iterations as possible.

Preference-based learning is beneficial for non-intuitive problems that aren't captured easily by a reward.

Limitations

- Action space bounds must be predefined
- Set of potential new actions is limited to a discrete set of actions
- Future work includes modifications to the learning framework to shift the action space based on the user's preferences

Conclusions

- The proposed preference-based learning framework is effective towards systematically exploring large parameter spaces using only a humans natural ability to judge "good" walking and experimentally resulted in improved locomotion for both platforms.

Learning Essential Constraints on AMBER-3M with Spring Feet

Experimental Setup: **HZD Optimization:** Action Space: $a := [a_1, \ldots, a_5]$ s.t: $\{\alpha^*, X^*\} = \operatorname{argmin} \Phi(X)$ Bounds Avg. Vel. (m/s) $a_1:[0.3,0.6]$ (Closed-loop Dynamics) s.t. $\dot{x} = f_{cl}(x)$ Clearance Tau (·) $a_2:[0.4,0.7]$ $\Delta(\mathcal{S} \cap \mathcal{Z}_{\alpha}) \subset \mathcal{Z}_{\alpha}$ (HZD Condition) $a_3:[0.05,0.19]$ Min. Clearance (m) $X_{\min} \leq X \leq X_{\max}$ (Decision Variables) $a_4:[-0.8,-0.2]$ Impact Vel. (m/s) (Physical Constraints) $c_{\min} \leq c(X) \leq c_{\max}$

(Essential Constraints)

Video: https://youtu.be/rLJ-m65F6C4

Learning ID-CLF-QP⁺ Controller Gains on Cassie

Experimental Setup:

Rapidly Exponentially Stabilizing CLF (RES-CLF):

 $a_{\min} \leq p(X) \leq a_{\max}$

$$V(\eta) = \eta^{\top} \underbrace{I_{\epsilon} P I_{\epsilon}}_{P_{\epsilon}} \eta, \qquad I_{\epsilon} = \begin{bmatrix} \frac{1}{\epsilon} I & 0 \\ 0 & I \end{bmatrix},$$

ID-CLF-QP⁺:

(with
$$\mathcal{X} := [\ddot{q}^\top, u^\top, \lambda^\top]^\top \in \mathbb{R}^{39}$$
 on Cassie)

$$\mathcal{X}^* = \underset{\mathcal{X} \in \mathbb{X}_{ext}}{\operatorname{argmin}} \quad ||A(x)\mathcal{X} - b(x)||^2 + \dot{V}(q, \dot{q}, \ddot{q})$$
s.t.
$$D(q)\ddot{q} + H(q, \dot{q}) = Bu + J(q)^{\top} \lambda$$

$$u_{min} \leq u \leq u_{max}$$

$$\lambda \in \mathcal{AC}(\mathcal{X})$$

Continuous time algebraic Ricatti equation (CARE):

Step Length (m)

$$F^{\top}P + PF + PGR^{-1}G^{\top}P + Q = 0,$$

Action Space Definition: $a := [a_1, \ldots, a_{12}]$ such that:		
	Pos. Bounds	Vel. Bounds
Q Pelvis Roll	a_1 :[2000, 12000]	$a_7:[5, 200]$
Q Pelvis Pitch	a_2 :[2000, 12000]	$a_8:[5, 200]$
Q Stance Leg Length	a_3 :[4000, 15000]	a_9 :[50, 500]
Q Swing Leg Length	a_4 :[4000, 20000]	a_{10} :[50, 500]
Q Swing Leg Angle	a_5 :[1000, 10000]	a_{11} :[10, 200]
Q Swing Leg Roll	a_6 :[1000, 8000]	a_{12} :[5, 150]

Video: https://youtu.be/wrdNKK5JqJk