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I. BACKGROUND 

The GPU has been widely used in machine learning. For a 
basic RL pipeline, the GPU is usually used to compute the neural 
network, while the CPU is used for simulation. The bottleneck 
of the training speed is from the CPU part, either the simulation 
speed or the limited threads for parallelization. Even we improve 
the CPU performance, the data transfer between CPU and GPU 
will dominate the computation. A full-stack GPU training 
pipeline mitigates the data transfer issue and allows massive 
parallelization. Based on our benchmark, this new GPU training 
pipeline can be 10-1000 times faster than the classic GPU+CPU 
pipeline.  

Another performance issue is related to the optimization-
based control. When an RL environment includes an 
optimization-based controller, the time to solve a QP or NLP 
dominates the computation. Our full-stack GPU pipeline reduces 
the overall training time by massive parallelization. We can run 
thousands of environments on a single GPU compared to tens in 
a CPU. We also show an architecture that an instant QP with RL 
policy performs equivalent to an NMPC but computes in a 
fraction of time.  

II. METHODS 

A. Full Stack GPU pipeline 

We use Nvidia Isaac Gym to build the full stack GPU 
pipeline. The Isaac Gym enables simulation on GPU and returns 
PyTorch tensor. The tensor is passed to a neural network and to 
compute rewards. The tensor includes states for all 
robots/environments, and no OpenMP, MPI are required. During 
the training, all data is stored in the PyTorch GPU tensor. Thus, 
no data transfer between CPU and GPU is required. The pipeline 
can be created all in Python.  

B. RL Policy with Optimization-based Control 

We created an architecture that combines a high-level RL 
policy and a low-level optimization-based controller. The RL 

policy takes robot states, local height map, and user command 
as input and outputs center of mass target acceleration, contact 
phase speed, and target feet locations for the low-level 
controller. The low-level controller is composed of a body 
controller and a swing leg controller. The body controller 
converts the center of mass target acceleration to ground reaction 
force by solving a QP. The swing leg controller converts the 
target feet' locations to trajectories and then tracks the 
trajectories. The contact phase decides the stance/swing 
switches.  

We have written a QP solver on GPU for our specific 
problem. Thus, we can run the entire feedback 
system/environment on GPU. Moreover, even our QP solves a 
problem at the current instant. We show the overall controller 
can be equivalent to a nonlinear model predictive control 
(NMPC) because the RL cumulates the reward and learn to 
predict the future implicitly. 

III. RESULTS & DISCUSSION 

We test our setup on a quadruped Laikago. We create a 
challenging terrain of stepping stone with random height. We 
compare our learning results with a high-level heuristic 
controller. When the task is more difficult, the heuristic 
controller will fail, and the RL-based controller can complete it 
until it reaches some physical limits. The training currently tasks 
a few hours, but we are working on getting it done within an hour 
by training in the cloud.  

IV. CONCLUSION 

We provide a full-stack GPU training pipeline that reduces 
the training time by mitigating the data transfer between GPU 
and CPU. The capability of massive parallelization suites well 
for the environment includes an optimization-based controller 
since the optimization is typically slow. Moreover, we show an 
instant QP + RL policy has a similar performance to NMPC but 
runs in a fraction of time.  

 

mailto:xda@nvidia.com

