

Full Stack GPU Training and An Architecture of

RL Policy with Optimization-Based Control

Xingye Da

Nvidia Corporation

Santa Clara, CA, USA

xda@nvidia.com

Zhaoming Xie

Department of Computer Science

University of British Columbia

Vancouver, BC, Canada

zxie47@cs.ubc.ca

I. BACKGROUND

The GPU has been widely used in machine learning. For a
basic RL pipeline, the GPU is usually used to compute the neural
network, while the CPU is used for simulation. The bottleneck
of the training speed is from the CPU part, either the simulation
speed or the limited threads for parallelization. Even we improve
the CPU performance, the data transfer between CPU and GPU
will dominate the computation. A full-stack GPU training
pipeline mitigates the data transfer issue and allows massive
parallelization. Based on our benchmark, this new GPU training
pipeline can be 10-1000 times faster than the classic GPU+CPU
pipeline.

Another performance issue is related to the optimization-
based control. When an RL environment includes an
optimization-based controller, the time to solve a QP or NLP
dominates the computation. Our full-stack GPU pipeline reduces
the overall training time by massive parallelization. We can run
thousands of environments on a single GPU compared to tens in
a CPU. We also show an architecture that an instant QP with RL
policy performs equivalent to an NMPC but computes in a
fraction of time.

II. METHODS

A. Full Stack GPU pipeline

We use Nvidia Isaac Gym to build the full stack GPU
pipeline. The Isaac Gym enables simulation on GPU and returns
PyTorch tensor. The tensor is passed to a neural network and to
compute rewards. The tensor includes states for all
robots/environments, and no OpenMP, MPI are required. During
the training, all data is stored in the PyTorch GPU tensor. Thus,
no data transfer between CPU and GPU is required. The pipeline
can be created all in Python.

B. RL Policy with Optimization-based Control

We created an architecture that combines a high-level RL
policy and a low-level optimization-based controller. The RL

policy takes robot states, local height map, and user command
as input and outputs center of mass target acceleration, contact
phase speed, and target feet locations for the low-level
controller. The low-level controller is composed of a body
controller and a swing leg controller. The body controller
converts the center of mass target acceleration to ground reaction
force by solving a QP. The swing leg controller converts the
target feet' locations to trajectories and then tracks the
trajectories. The contact phase decides the stance/swing
switches.

We have written a QP solver on GPU for our specific
problem. Thus, we can run the entire feedback
system/environment on GPU. Moreover, even our QP solves a
problem at the current instant. We show the overall controller
can be equivalent to a nonlinear model predictive control
(NMPC) because the RL cumulates the reward and learn to
predict the future implicitly.

III. RESULTS & DISCUSSION

We test our setup on a quadruped Laikago. We create a
challenging terrain of stepping stone with random height. We
compare our learning results with a high-level heuristic
controller. When the task is more difficult, the heuristic
controller will fail, and the RL-based controller can complete it
until it reaches some physical limits. The training currently tasks
a few hours, but we are working on getting it done within an hour
by training in the cloud.

IV. CONCLUSION

We provide a full-stack GPU training pipeline that reduces
the training time by mitigating the data transfer between GPU
and CPU. The capability of massive parallelization suites well
for the environment includes an optimization-based controller
since the optimization is typically slow. Moreover, we show an
instant QP + RL policy has a similar performance to NMPC but
runs in a fraction of time.

mailto:xda@nvidia.com

