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I. MOTIVATION

Creating locomotion controllers for legged robots that work
in the real world requires producing behaviors with a high
degree of robustness to unknown disturbances such as ground
height, slopes, and ground friction. Thus, engineering a lo-
comotion controller by hand for this problem requires an
intensive process of hand-tuning gains or explicitly handling
disturbances such as early or late contact and other edge cases.

Reinforcement learning presents an alternative to this
paradigm. Rather than describing an explicit solution for
a problem, it may be easier to describe the problem and
learn the solution. Describing the problem, however, is not
always an easy task. A common approach is using precise
reference trajectories, which are effective at guiding learning,
but only describe a small space of behaviors. Closely tracking
reference trajectories can prevent controllers from exploring
more behaviors and reacting well to disturbances.

II. PRINCIPLED COST FUNCTIONS

One key observation that can be used to reduce the scale
of the problem description is that any gait can be defined by
the timings of its periodic swing and stance phases for each
foot. A principled cost function based on this observation is to
penalize foot forces during swing and penalize foot velocities
during stance. We can define the continuous spectrum of all
2-phase bipedal gaits with a simple parameterization of the
ratio between the swing and stance phases and the shift in the
periodic clocks for each foot. By providing these parameters to
the controller, we can smoothly transition between behaviors
like walking, running, and hopping. This framework can also
define more complex gaits like skipping by parameterizing the
timings of four phases instead of two.

III. SIM-TO-REAL AND ROBUST CONTROLLERS

Training control policies in simulation does not necessarily
result in policies that work on hardware in the real world,

a phenomenon known as the reality gap. A solution to this
problem, known as dynamics randomization, involves collect-
ing experience from a simulator which is subject to random
initializations of dynamics parameters such as joint inertia or
ground friction. Under this scheme, policies must learn to
be robust to a variety of dynamical conditions, even without
explicit knowledge of such conditions.

This presents a problem for conventional reinforcement
learning policies, which are often simple feedforward neural
networks. These networks have no mechanism for observing
or inferring the dynamics parameters, and so may not be able
to choose actions appropriate for the dynamical conditions
as the world is only partially observed. Instead, we opt to
use memory-enabled neural networks, such as LSTMs, so that
dynamical conditions can be inferred or approximated in latent
form inside the neural network.

IV. RESULTS

Using principled cost functions and our parameterization of
all two-phase bipedal gaits, we produced controllers that learn
all common bipedal behaviors (walking, running, hopping,
galloping, standing) and can smoothly transition between them
[1]. Additionally, by extending the dynamics randomization
procedure used in [1] with stair-like terrain randomization, we
produced controllers which can walk up and down all kinds of
real-world stairs despite being completely blind to the external
world. [Video Link].
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Fig. 1: Our control hierarchy makes use of a recurrent control policy paired with both domain and dynamics randomization, as well as a reference-trajectory-free
reward structure allowing for any bipedal gait to be learned.

https://www.youtube.com/watch?v=3F1upy2VKZk
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