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I. INTRODUCTION

Trajectory optimization (TO) has been a widely-used framework
in robotics and control communities, especially in robot locomotion.
For example, when planning a collision-free and dynamical feasible
trajectory for a quadrotor or generating a control sequence for a
bipedal walking robot while respecting the input limitations, the
numerical optimization-based approach could be a powerful tool.
To solve these involved nonlinear programming (NLP), some off-
the-shelf NLP solvers like SNOPT are often employed due to
their inherited features of robustness, easy-to-deal-constraints and
easy-implementation. However, they are too slow sometimes and
require high computation power. By contrast, Differential Dynamic
Programming (DDP) gives a faster alternative way to solve the
optimization problems by exploiting the Markov structure of the
system dynamics.

Unfortunately, unconstrained DDP methods can hardly be applied
to legged robots directly. Actuator saturation, joint limits, limita-
tions of torso orientation, and friction cone need to be treated as
inequality constraints in the NLP problem. It also cannot handle the
infeasible initial start. Although some researchers have applied the
DDP method and its variants to solve the trajectory optimization
problem, they either incorporated DDP with state/input inequality
constraints through penalty/active-set methods or extended DDP-
like algorithms to a multiple shooting framework. Only few of
them integrated these modifications together to systems with with
complex nonlinear constraints. Therefore, to utilize the advantage of
enabling an infeasible initial start from the multiple shooting frame-
work and involve nonlinear state/input constraints simultaneously,
we propose a hybrid Differential Dynamic Programming method
for the constrained TO problems.

II. METHODS

Our approach has two stages. The first stage rapidly solves the
constrained trajectory optimization problem to get a low-precision
solution using Augmented Lagrange method. In the second stage,
we further post-process the resulting solution using an interior point
method.

Following the work of [1], we firstly turned the constrained
optimization problem into unconstrained one by wrapping DDP up
with Augmented Lagrange method, named AL-MSDDP. After each
iteration, including a pair of backward pass and forward rollout,
the dual variables are then updated. Augmented Lagrange method
is suitable for use with the multiple shooting settings without being
unstable during iterations, which is important for DDP. Although the
coarse solution from AL-MSDDP might not satisfy the tolerance of
constraints or might be infeasible due to numerical ill-conditioning
and slow tail convergence of penalty methods, it is still a good
initial guess to warm start the second stage.

To refine the coarse solution obtained in the first stage, we
applied the relaxed log barrier function method to DDP [2], named
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RLB-MSDDP, to approximate the optimization problem [3]. RLB-
MSDDP shares the same shooting phases and constraints with
AL-DDP. Initialized by the solution from AL-DPP, RLB-MSDDP
can obtain a refined solution with an improved tolerance of
constraints satisfaction and can even adapt an infeasible trajectory
to be feasible. Such an adaptation is our main contribution,
allowing us to get feasible state/input trajectories and reserve the
linear feedback policy in the form of u “ uref ` Kptqpx ´ xref q

to improve robustness in the dynamic locomotion of legged robot.
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Fig. 1: Illustrating examples on generating collision-free trajectories.
(a) Nonholonomic Vehicle; (b) Planar Quadrotor

III. INITIAL SIMULATION RESULTS

We verified our proposed approach on two underactuated sys-
tems, a nonholonomic vehicle and a planar quadrotor. The vehicle
was expected to move from x0 “ r0; 0; 0s to xf “ r3; 3;π{2s. The
optimal trajectory minimized the control effort and deviation from
the goal state. AL-MSDDP took 3 iterations and then RLB-MSDDP
took 49 iterations to find a collision-free optimal trajectory without
violating input limitations as shown in Fig. 1 (a). For the planar
quadrotor, AL-MSDDP stopped at the 2nd iteration and returned
an infeasible trajectory. RLB-MSDDP took another 29 iterations to
converge to an optimal solution while eliminating infeasibility as
shown in Fig. 1 (b).

IV. DISCUSSION

We have tested our algorithm in some classical underactuated
systems. It is natural to extend our method to legged robot systems.
For example, with predefined contact sequences and step timings,
our approach is supposed to generate different gaits including walk-
ing, trotting and hopping [4] with a time-varying linear feedback
policy, which is our future work.
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Family of Iterative Gauss-Newton Shooting Methods for Nonlinear
Optimal Control,“ IROS, pp. 1-9, 2018.

[2] R. Grandia, F. Farshidian, R. Ranftl and M. Hutter, “Feedback MPC
for Torque-Controlled Legged Robots,“ IROS, pp. 4730-4737, 2019.

[3] J. Hauser and A. Saccon, “A Barrier Function Method for the Opti-
mization of Trajectory Functionals with Constraints,“ CDC, pp. 864-
869, 2006.

[4] C. Mastalli et al., “Crocoddyl: An Efficient and Versatile Framework
for Multi-Contact Optimal Control,“ ICRA, pp. 2536-2542, 2020.


