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Abstract—Model-free reinforcement learning (RL) for legged
locomotion commonly relies on a physics simulator that can
accurately predict the behaviors of every degree of freedom of
the robot. In contrast, approximate reduced-order models are
often sufficient for many model-based control strategies. In this
work we explore how RL can be effectively used with a centroidal
model to generate robust control policies for quadrupedal loco-
motion. Advantages over RL with a full-order model include
a simple reward structure, reduced computational costs, and
robust sim-to-real transfer. We further show the potential of
the method by demonstrating stepping-stone locomotion, two-
legged in-place balance, balance beam locomotion, and sim-to-
real transfer without further adaptations. Additional Results:
https://sites.google.com/view/centroidal-rl.

I. INTRODUCTION

Tremendous progress has been made recently in the field
of legged locomotion, achieved using both model predictive
control (MPC) and reinforcement learning (RL) methods.
MPC methods leverage modern optimization techniques and
known models of the physics, possibly simplified, to syn-
thesize responsive control at run time. However, they can
be prone to local minima, can require substantial manual
tuning, and are difficult to generalize to complex terrains
and rich perceptual streams. Moreover, the real-time MPC
usually uses a linear model to reduce the computation time,
which is hard to represent the legged system’s nonlinear
and hybrid nature. Alternatively, model-free methods such
as reinforcement learning (RL) utilize Monte-Carlo sampling
strategies and can learn control policies for general tasks. This
comes at the expense of extensive offline physics simulations
required during training, careful system modeling, and detailed
reward design to produce results that are feasible for physical

In this paper, we seek to realize some of the key bene-
fits of both approaches. Instead of relying on an accurate
simulation of the robot model, we use a strongly-abstracted
centroidal model. We model the robot as a single rigid body
with massless legs that is controlled via the ground reaction
forces (GRF) applied at the legs that are in contact with the
environment, as shown in Fig. 1. We further assume a specified
gait pattern and a foot-placement function. Taken together, this
allows for a simple task reward specification, in contrast to the
more complex reward structures commonly required for full-
model RL. Additional constraints such as no-slip constraints
and leg lengths are enforced via quadratic programming (QP)
and foot placement strategies. With the above in place, we
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Fig. 1: Learning to generate a whole-body locomotion controller with
reinforcement learning is both inefficient and brittle. A key insight
of this paper is to combine the strengths of reduced-order modeling
with learning through RL in Centroidal Model Space. The centroidal
model consists of a single rigid body with virtual legs attached as
illustrated above. Control is realized by generating ground reaction
forces at foot locations in contact with the ground.

robots.
then synthesize control policies for this simplified model
via reinforcement learning. The resulting policy actions are
realized on the full robot model by converting the GRFs to
joint torques using the Jacobian transpose for the stance legs
and a simple trajectory-tracking approach for the swing legs.
The resulting control policies are validated on simulations of
the Laikago and A11 quadruped robots as well as on a physical
A1 robot.

Our core contributions are as follows:
• We introduce a framework for learning control policies

suited for centroidal dynamics models, enabling the an-
ticipatory behavior required for quadrupedal locomotion
and balance tasks, without the complexities of working
with the full model. This allows for simple reward design,
enables efficient simulation during training, and yields
flexible and robust motion control.

• We demonstrate the effectiveness of this framework for
multiple gaits, stepping stone scenarios, balance beam lo-
comotion, and two-legged in-place balancing. We further
show successful transfer to a physical robot.
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1Laikago and A1 are quadrupedal robots made by Unitree Robotics.

https://sites.google.com/view/centroidal-rl
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